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Autonomous non-long-terminal repeat (non-LTR) retro-
transposons, including long interspersed elements (LINEs),
are mobile genetic elements abundant in eukaryotic species
that shape the genomic landscape and host physiology in both
health and disease. Non-LTR retrotransposons create new
genomic copies through a mechanism termed target-primed
reverse transcription, where the retrotransposon-encoded
protein nicks target DNA to prime reverse transcription
templated by bound RNA, typically its own encoding mRNA.
Until recently, structural information on non-LTR retro-
transposons was lacking due to challenges in purification and
reconstitution of active complexes. Recent biochemical studies
and cryo-electron microscopy structures of complexes from
insect, bird, and turtle site-specific R2 retrotransposons and
the human LINE-1 retrotransposon have provided important
insights. Here we discuss these studies and their implications
for retrotransposon evolution and eukaryotic genome biology.
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Retroelements are mobile genetic elements that are
widespread in all three domains of life [1,2].
In multicellular eukaryotes, the copy-and-paste
www.sciencedirect.com
mechanism of retrotransposons has generated a large
fraction of genome content, shaping both the genetic
landscape and host physiology [3e7]. Despite the
inherent potential for conflict between retrotransposon
mobilization and stability of the host genome, signifi-

cant accumulation of retrotransposons has occurred
during evolution [2,8]. The long interspersed element
(LINE) retrotransposons that are common in mammals
are a branch of the larger family of non-long terminal
repeat (non-LTR) retrotransposons, which, combining
autonomously mobile retrotransposons (the focus of this
article) and their passenger, nonautonomous genome
insertions (see Ref. [9] for review), compose a shock-
ingly large fraction of many mammalian genomes (far
above 20%) [3,8,10]. The LTR-retrotransposons and
endogenous retroviruses that evolved from ancestral

non-LTR retrotransposons are described in other re-
views (see Refs. [11,12]).

Eukaryotic retrotransposons are ancestrally related to
mobile group II introns (Figure 1a) found in bacteria,
archaea, and in the mitochondrial and chloroplast ge-
nomes of some eukaryotes [13,14]. Group II introns are
highly structured catalytic RNAs that can self-splice and
reverse-splice into genomic loci [13,14]. Derived from
this ancestry, eukaryotic retrotransposons are more
divergent in their target sites in a genome, with some

being highly selective for a target DNA, while others
insert into loci that share only a short consensus
sequence [15]. The relatively well-studied site-specific
retrotransposon R2 inserts into the tandemly repeated
ribosomal RNA gene loci transcribed by RNA polymer-
ase I (the rDNA) within the genomes of nonmammalian
multicellular animals [16]. Decades of biochemical and
biological study established the R2 retrotransposon from
the domestic silk moth, Bombyx mori, as the first
reconstituted model system for investigation of non-
LTR retrotransposon protein activities [16]. Recent

work has expanded studies of R2 to other species
(Figure 1b). In contrast to the conserved targeting
specificity of R2, the human genome has one autono-
mously active retrotransposon, LINE-1 (Figure 1c) that
inserts widely throughout our and other mammalian
genomes [1,3]. By mobilizing LINE-1 mRNAs and also
nonautonomously mobile short interspersed nuclear
element (SINE) RNAs, the LINE-1 encoded enzyme
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Figure 1

Autonomously mobile non-LTR retroelements in prokaryotes and eukaryotes. (a) Bacterial group II intron encodes a long, structured intron RNA (top) and
an enzyme with reverse transcriptase and often endonuclease activities (middle). (b) Eukaryotic R2 retrotransposon inserts into rDNA loci and encodes
an RNA with structured 50 and 30 regions (top) and an enzyme with endonuclease and reverse transcriptase activities (middle). The 50 RNA illustrated is
based on B. mori R2 RNA (ref: [21,25]) and may be unique to silk moth R2; the 30UTR illustration is based on vertebrate A-clade R2 RNAs (ref: [22]), with
many other R2s having a stem-loop in place of the pseudoknot. (c) Human LINE-1 retrotransposon inserts throughout the genome, copying LINE-1 and
also nonautonomous SINE RNAs (Alu RNA is illustrated as one type of SINE). It encodes for a genomic RNA that gains a long poly(A) tail and translates
ORF1p (not shown) and ORF2p (middle). The LINE-1-encoded enzyme ORF2p has endonuclease and reverse transcriptase activities. RNA features
shown in solid red color in (a–c) are sufficient for new gene insertion. Below the schematics in (a–c), the tables illustrate the expansion of typical
retrotransposon copy number per genome. (d) Biochemical stages of TPRT are illustrated with nucleic acids only. The removal of RNA from cDNA:RNA
duplex is not well characterized, indicated by RNA conversion to a dashed line in the illustration. LTR, long-terminal repeat; UTR, untranslated region;
LINE, long interspersed element; SINE, short interspersed element; ORF, open reading frame; TPRT, target-primed reverse transcription.
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(ORF2 protein, ORF2p) has generated a third of the
human genome [3]. Ongoing LINE-1 retrotransposition
is a source of genome evolution and genetic diversity,
and it has an impact on aging, neurodegeneration, and
human disease [1,3,6].

Eukaryotic non-LTR retrotransposons propagate via a
shared mechanism termed target-primed reverse tran-
scription (TPRT), in which nicking of one target DNA
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strand by the retrotransposon-encoded enzyme creates a
primer for reverse transcription of the retrotransposon
mRNA or other bound template RNA [10]. TPRT ac-
tivity of the R2 retrotransposon enzyme was robustly
reconstituted in vitro [17], but TPRT activity by that of
the human LINE-1 ORF2p remained very low [18] until
recent work [19]. Structural characterization of retro-
transposon proteins and ribonucleoproteins had
remained elusive, limited by biochemical challenges,
www.sciencedirect.com
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particularly for the human LINE-1 system. In the last
two years, however, cryo-electron microscopy (cryo-EM)
has provided atomic-level insight into the TPRT mech-
anism of both eukaryotic R2 and human LINE-1 retro-
transposons [19e24]. In this review, we first discuss the
recent cryo-EM structures of insect and vertebrate R2
proteins and human LINE-1 ORF2p during the process
of new DNA insertion to target DNA. We then highlight

progress in our understanding of the biochemical steps in
the mechanisms of retrotransposition and discuss their
implications for genome biology and evolution. We finish
with what we believe are outstanding questions about
mechanism that remain to be resolved.
Cryo-electron microscopy structures of R2
retrotransposon assemblies from insect
and vertebrate species
R2 retrotransposons are site-specific elements that
copy-and-paste into the tandemly repeated rDNA gene
loci and exist within the genomes of multicellular ani-
mals, including insects, crustaceans, and nonmammalian
Figure 2

Cryo-EM structures of R2 retrotransposon assemblies during TPRT. (a) Domai
DNA-binding Myb domain; NTEs, N-terminal extensions; RT, reverse transcri
endonuclease. (b–d) Cryo-EM structures from three recent studies: initial enz
and initiation of synthesis for BoMo (PDB 8GH6) and for PlaMe (PDB 9NL2) [20
cryo-electron microscopy; TPRT, target-primed reverse transcription; PlaMe, P
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vertebrates. The B. mori R2 protein, hereafter BoMo,
has served as a model eukaryotic retrotransposon protein
for TPRT. While prior biochemical work established that
the R2 protein recognizes the 30 untranslated region
(UTR) of the retrotransposon RNA and nicks the first
target DNA strand of a 28 S rDNA locus to initiate
TPRT, the atomic-level underpinnings of TPRT initia-
tion had remained elusive. Two recent cryo-EM studies

[20,21] have now provided insights into retro-
transposition by describing the structures of BoMo
initiating TPRT bound to 30 UTR RNA and target DNA
(Figure 2aed). Simultaneously, in efforts to engineer
the R2-encoded proteins for transgene insertion into
rDNA loci in human cells, we sampled the diversity of
eukaryotic R2s and identified the A-clade R2 proteins
from avian species, including Taeniopygia guttata (TaGu),
to be highly efficient for precise transgene delivery
[26,27]. In contrast, the D-clade BoMo was inefficient
at transgene insertion in human cells [27]. More

recently, we determined the cryo-EM structures of
TaGu and an A-clade R2 protein from a turtle (Platys-
ternon megacephalum, PlaMe) in distinct biochemical
n architectures of A-clade and D-clade R2 proteins. ZnF, zinc-fingers; Myb,
ptase; thumb, thumb domain; ZnK, zinc knuckle; RLE, restriction-like
yme-nucleic acid engagement for BoMo (PDB 8IBW) [21], first-strand nick
,22], and second-strand nicked state for PlaMe (PDB 9NL4) [22]. cryo-EM,
latysternon megacephalu.
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steps to provide further insights into TPRT
[22] (Figure 2eef).

Collectively, the different R2 structures inform us about
mechanisms fundamental to TPRT, illustrating the
nicking of a target DNA strand by the restriction-like
endonuclease (RLE) and the transfer of the nicked 30
end to the reverse transcriptase (RT) core, where it

base-pairs with the 30 UTR RNA to initiate first-strand
synthesis (Figure 2c). Overall, all R2 proteins recognize
the rDNA target through an extensive surface composed
of the N-terminal DNA-binding zinc-finger and Myb
domains and the C-terminal RLE domain (Figure 2ced).
All R2 proteins similarly engage with their cognate 30
UTR RNA using an expansive surface consisting of the
N-terminal extension (NTE) and RT domains
(Figure 2aed). A major difference between D-clade and
A-clade R2 proteins lies in the number of N-terminal
zinc fingers. Whereas the D-clade BoMo has one zinc

finger and a Myb domain that interacts with a small
surface area on rDNA upstream of the nick site, the A-
clade TaGu and PlaMe have a longer upstream rDNA
recognition surface consisting of three zinc fingers and
the Myb domain (Figure 2dee) [20,22]. The most N-
terminal zinc finger (ZnF3) in A-clade TaGu and PlaMe
also engages the 30 UTR RNA (Figure 2ced) [20,22].

The R2 proteins are able to nick the second target DNA
strand (Figure 1d). Second-strand nicking activity is
suppressed in the presence of bound 30 UTR RNA but

becomes activated once the 30 UTR RNA is removed
from its initial binding site by first strand cDNA syn-
thesis and production of the template RNA-cDNA
duplex [21,22]. This finding suggests a sequential
series of events, where second-strand cleavage occurs
after first-strand nicking and cDNA synthesis (Fig. 1d,
Figure 2bed). B. mori R2 RNA contains a folded 50 motif
overlapping with the BoMo open reading frame (ORF)
that may engage with BoMo to activate second strand
cleavage [25]. Cryo-EM visualization of the protein-
RNA interaction of BoMo and B. mori R2 50 RNA
shows that the 50 RNA binds in a manner mutually

exclusive with target DNA binding, including contacts
with the BoMo surfaces that were bound to rDNA
during TPRT initiation [21]. Notably, this 50 RNA
feature does not appear to be conserved in other species’
R2. Recently, we determined a structure of the A-clade
PlaMe complex after second-strand nicking by
mimicking the nucleic acid configuration when first-
strand cDNA synthesis is complete (Figure 2d) [22].
Surprisingly, this structure revealed that the N-terminal
zinc-fingers and Myb domain still bound to upstream
target DNA in a similar configuration as the TPRT

initiation complex (compare Figure 2d with the right
side of Figure 2c) [22]. Upon second-strand nicking, the
synthesis of a second cDNA strand has to occur to
complete retrotransposition (Figure 1d), but the
mechanistic details of this process are unclear.
Current Opinion in Structural Biology 2025, 92:103053
Biochemical and cryo-electron microscopy
studies of human long interspersed
elements-1 retrotransposition
The human LINE-1 retrotransposon encodes for two
proteins: the RNA chaperone ORF1p and the retro-
transposition enzyme ORF2p (Figure 3aeb) [3]. In
contrast with the extreme target DNA selectivity of R2
proteins, ORF2p is relatively unspecific for target DNA
due to the lack of sequence specificity of its DNA-
binding domains. As such, LINE-1 insertions have
degenerate target site specificity and insert widely
throughout the human genome [3]. ORF2p has an N-
terminal apurinic/apyrimidinic endonuclease domain

(APE), homologous to enzymes involved in base-excision
repair, that preferentially nicks a short consensus motif 50
TTTTT/AA 30 (Figure 3c) [28,29]. Understanding the
biochemical and structural basis of LINE-1 retro-
transposition has been limited by challenging purifica-
tion and reconstitution of LINE-1 ribonucleoproteins,
which in cells are scarce and have heterogeneously
associated RNAs and other proteins [30e33]. A previous
study aimed to reconstitute retrotransposition with
overexpressed ORF2p, but the DNA nicking activity of
this ORF2p was low, and robust TPRTwas not observed

[18]. While X-ray structures of three specific domains of
ORF1p and the APE domain of ORF2p had been pre-
viously reported [29,34e36], three recent cryo-EM
studies have now provided structures of full-length
ORF2p engaged with nucleic acids [19,23,24].

Using a bacterial expression system, Baldwin et al. pu-
rified an ORF2p protein core lacking the N-terminal
APE domain and the C-terminal domain (CTD) and
determined X-ray and cryo-EM structures of nucleic
acid substrates bound in the ORF2p RTactive site [23].
In our own recent work, we purified full-length ORF2p
overexpressed in large-scale insect cell cultures and
used biochemistry and cryo-EM to provide new insights
into LINE-1 retrotransposition [19]. We determined
cryo-EM structures of ORF2p engaged with a structured
native Alu SINE RNA 30 end (Figure 1c) in early TPRT,

with an RNA-DNA duplex enclosed within the ORF2p0s
RT core (Figure 3b) [19]. The poly(A) tract of the
template RNA engages with several domains, including
the N-terminal extension motifs (NTEs) and preceding
APE endonuclease domain (EN) linker, as well as the
CTD, creating sequence-specific contacts [19,37]. We
also showed that a stem-loop within an Alu or synthetic
RNA is positioned by electrostatic interactions with
ORF2p (Figure 3b) that would ideally locate an Alu
RNA poly(A) tail for TPRT initiation [19].

Using biochemical analyses of TPRT, we observed that

the DNA nicking and TPRT activities of ORF2p were
greatly stimulated only when the TTTTT/AA nick site
was positioned near the 50 end of the target double-
stranded DNA (dsDNA), but not when longer dsDNA
was added upstream of the nick site [19]. A single-
www.sciencedirect.com
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Figure 3

(a) Domain architecture of human LINE-1 retrotransposon, including a 50 UTR region with RNA polymerase II promoter, ORF for RNA chaperone ORF1p,
inter-ORF spacer, ORF for enzyme ORF2p, and 30UTR terminating in a nongenomic poly(A) sequence. Domains of ORF2p (shown in different colors):
APE, apurinic/apyrimidinic endonuclease; EN Linker, linker between APE EN domain and ORF2p core; NTEs, N-terminal extension motifs; RT, reverse
transcriptase; thumb, thumb domain; wrist domain, which we previously referred to as RNA-binding domain [19]; and CTD, C-terminal domain. (b) Cryo-
EM structure of ORF2p engaged with an Alu-like synthetic template RNA (PDB 8UW3) [19] shown in two orientations with protein in surface repre-
sentation and nucleic acids in cartoon representation. Prenicked target DNA was modeled by superimposing the X-ray structure of prenicked DNA with
APE domain (PDB 7N8S) onto the RNA-bound ORF2p structure [29]. (c) Cartoon illustrating that ORF2p carries out robust first strand nicking and TPRT
only on DNA substrates with a 50 single-stranded DNA overhang followed by double-stranded DNA containing the nick site [19]. UTR, untranslated region;
ORF, open reading frame; EN, endonuclease; CTD, C-terminal domain; cryo-EM, cryo-electron microscopy; TPRT, target-primed reverse transcription.
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stranded DNA (ssDNA) region of 27 nucleotides (nt)
placed 50 of the target dsDNA nick positions was
preferred, with much less stimulation by shorter ssDNA
overhangs [19]. By superimposing the structure of APE
domain co-crystallized with dsDNA [29] onto our full-
length ORF2p structure, we deduced that the source of
this preference could be a steric clash between the
ORF2p CTD and dsDNA upstream of the nick site [19].

Confirming our findings, a subsequent study could detect
no TPRT activity on fully duplex target DNA and
detected TPRT using target DNA with a minimal 7 nt
ssDNA 50 overhang [24]. Thus, our findings show that
ORF2p performs TPRT on DNA substrates that are
structure-specific for a 50 ssDNA overhang, an
architecture that would be abundant on the primed
lagging-strand template behind DNA replication forks.
This result, along with the reported interaction of
ORF2p with proliferating cell nuclear antigen (PCNA)
[30], provides a molecular explanation for previous work
www.sciencedirect.com
demonstrating that LINE-1 retrotransposon insertion
occurs preferentially during the S-phase of the cell cycle
[38] and shows strong insertion preference for the lagging
strand template [39,40].

Recently Ghanim et al. determined cryo-EM structures
of ORF2p engaged with target DNA nicked on both
strands [24]. Input DNA was prenicked on the first

strand, but only a trace amount of upstream duplex
DNA nicked also on the second strand was bound by
ORF2p [24]. The nicked second strand density appears
connected to an unassigned single-stranded RNA den-
sity that further connects to the template RNA in
ORF2p0s RT active site [24], altogether forming the
path of the poly(A) RNA tail in our cryo-EM structure
[19]. Since ORF2p cannot make the first nick on a
double-stranded target DNA [19,24], it will be impor-
tant to understand the physiological relevance in duplex
DNA binding in this configuration [24]. It will also be
Current Opinion in Structural Biology 2025, 92:103053
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important to distinguish between the different modes of
ORF2p binding to PCNA, which could occur via the
originally defined motif on ORF2p [30] or a newly
identified PCNA binding site with AlphaFold3 pre-
dictions [24]. There are many states of ORF2p nucleic
acid interaction required in RNA selection, target site
selection, nicking, and cDNA synthesis; understanding
the transitions between these states will be highly

informative for placing structural snapshots in context.
Evolutionary aspects of retrotransposition
mechanisms
When comparing the retrotransposition mechanisms of

prokaryotic and eukaryotic non-LTR retroelements, a
few key similarities and differences become apparent.
While proteins from both systems use a DNA nicking
event to prime reverse transcription of the retroelement
RNA, the substrates they use are different. Eukaryotic
retrotransposon RNA structures have become less
complex (Figure 1aec), concurrent with the change to a
noncatalytic role. While a group II intron RNA adopts a
complex folded structure [13,41e44], RNA structural
complexity is reduced for eukaryotic R2 transposons
[20e22], and further still for human LINE-1 due to

ORF2p primary recognition of poly(A) sequence
[19,37]. Concurrently, retroelement-encoded proteins
have increased in number, size, and domain complexity,
as has the role that the encoded proteins take in
defining target DNA specificity of TPRT
[19e21,45,46]. Notably, specific group II introns utilize
the lagging strand DNA template and Okazaki frag-
ments that are generated by DNA replication forks for
insertion [14,47], paralleling human LINE-1 insertions
[19,39,40]. In fact, many prokaryotic mobile elements
harness vulnerabilities on the lagging-strand, including
the exposed 30 OH on the Okazaki fragment primer,

exposed ssDNA, or the presence of replication-associ-
ated proteins as the key features for their targeting [48].
Conclusions and outstanding questions
The recent cryo-EM and biochemical studies of insect

and vertebrate R2 retrotransposon proteins and the
human LINE-1 ORF2p have greatly advanced our
structural and functional understanding of the insertion
mechanisms of eukaryotic non-LTR retrotransposons.
These studies have provided the necessary framework
for further work aiming to fill the remaining gaps in our
understanding of eukaryotic non-LTR retrotransposon
mobility. Particularly, how an active retroelement
RNA:protein complex is assembled for competent
retrotransposition remains unknown. This process is
presumed to involve cotranslational assembly of retro-

element RNA:protein complexes in a mechanism
termed cis-preference [49,50], but the generality of this
human LINE-1 ribonucleoprotein assembly specificity
remains to be determined [14]. Further, the role(s) of
ORF1p in the LINE-1 retrotransposon process remain
Current Opinion in Structural Biology 2025, 92:103053
uncertain; ORF1p is thought to function as an RNA
chaperone for LINE-1 mRNA, yet it is not essential for
Alu RNA retrotransposition [51,52]. Finally, how DNA
lesions created during retrotransposition are repaired to
produce a stably inserted new retrotransposon copy also
remains elusive. Future biochemical, functional, and
structural work will elucidate these key steps for
eukaryotic retrotransposition mechanisms.
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